Negative association between neurovascular coupling and cortical gray matter volume during the lifespan

Recent studies have established the moment-to-moment turnover of the blood-oxygen-level-dependent signal (TBOLD) at resting state as a key measure of local cortical brain function. Here, we sought to extend that line of research by evaluating TBOLD in 70 cortical areas with respect to corresponding brain volume, age, and sex across the lifespan in 1,344 healthy participants including 633 from the Human Connectome Project (HCP)—Development cohort (294 males and 339 females, age range 8–21 yr) and 711 healthy participants from HCP-Aging cohort (316 males and 395 females, 36–90 yr old). In both groups, we found that 1) TBOLD increased with age, 2) volume decreased with age, and 3) TBOLD and volume were highly significantly negatively correlated, independent of age. The inverse association between TBOLD and volume was documented in nearly all 70 brain areas and for both sexes, with slightly stronger associations documented for males. The strong correspondence between TBOLD and volume...

The brain landscape of the two-hit model of posttraumatic stress disorder

The neurophysiological mechanisms underlying the development of posttraumatic stress disorder (Post-traumatic Stress DisorderPost-traumatic Stress Disorder (PTSD)A complex psychiatric syndrome that develops in response to trauma exposure. Individuals with PTSD experience intrusive recollections or reexperiencing of the traumatic event, avoidance of trauma reminders, emotional numbing, and hyperarousal. In addition, PTSD is associated with high rates of concomitant physical and mental health problems, increased health care use, and impairment in social and occupational functioning. Almost 7% of the general population and up to 30% of veterans meet lifetime criteria for PTSD. Indeed, PTSD is one of the most common psychiatric disorders, representing a significant and costly public health concern.) are poorly understood. Here we test a proposal that PTSDPost-traumatic Stress Disorder (PTSD)A complex psychiatric syndrome that develops in response to trauma exposure. Individuals with PTSD experience intrusive recollections or reexperiencing of the traumatic event, avoidance of trauma reminders, emotional numbing, and hyperarousal. In addition, PTSD is associated with high rates of concomitant physical and mental health problems, increased health care use, and impairment in social and occupational functioning. Almost 7% of the general population and up to 30% of veterans meet lifetime criteria for PTSD. Indeed, PTSD is one of the most common psychiatric disorders, representing a significant and costly public health concern. symptoms reflect fixed, highly correlated neural networks resulting from massive engagement of sensory inputs and the sequential involvement of those projections to limbic areas. Three-tesla Functional Magnetic Resonance ImagingFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. data were acquired at rest in 15 veterans diagnosed with PTSDPost-traumatic Stress Disorder (PTSD)A complex psychiatric syndrome that develops in response to trauma exposure. Individuals with PTSD experience intrusive recollections or reexperiencing of the traumatic event, avoidance of trauma reminders, emotional numbing, and hyperarousal. In addition, PTSD is associated with high rates of concomitant physical and mental health problems, increased health care use, and impairment in social and occupational functioning. Almost 7% of the general population and up to 30% of veterans meet lifetime criteria for PTSD. Indeed, PTSD is one of the most common psychiatric disorders, representing a significant and costly public health concern. and 21 healthy control veterans from which zero-lag cross correlations between 50 brain areas (N = 1,225 pairs) were computed and analyzed. The brain areas were assigned to tiers based on the neurocircuitry of successively converging sensory pathways proposed by Jones and Powell (Jones EG, Powell TP. Brain 93: 793-820, 1970). The primary analyses assessed normalized proportional differences in cross correlation strength within and across tiers in veterans with PTSDPost-traumatic Stress Disorder (PTSD)A complex psychiatric syndrome that develops in response to trauma exposure. Individuals with PTSD experience intrusive recollections or reexperiencing of the traumatic event, avoidance of trauma reminders, emotional numbing, and hyperarousal. In addition, PTSD is associated with high rates of concomitant physical and mental health problems, increased health care use, and impairment in social and occupational functioning. Almost 7% of the general population and up to 30% of veterans meet lifetime criteria for PTSD. Indeed, PTSD is one of the most common psychiatric disorders, representing a significant and costly public health concern. and control veterans. Compared with control veterans, cross correlation strength was higher in veterans with PTSDPost-traumatic Stress Disorder (PTSD)A complex psychiatric syndrome that develops in response to trauma exposure. Individuals with PTSD experience intrusive recollections or reexperiencing of the traumatic event, avoidance of trauma reminders, emotional numbing, and hyperarousal. In addition, PTSD is associated with high rates of concomitant physical and mental health problems, increased health care use, and impairment in social and occupational functioning. Almost 7% of the general population and up to 30% of veterans meet lifetime criteria for PTSD. Indeed, PTSD is one of the most common psychiatric disorders, representing a significant and costly public health concern., within and across...

Heritability of brain neurovascular coupling

The moment-to-moment variation of neurovascular coupling in the brain was determined by computing the moment-to-moment turnover of the blood-oxygen-level-dependent signal (TBOLD) at resting state. Here we show that 1) TBOLD is heritable, 2) its heritability estimates are highly correlated between left and right hemispheres, and 3) the degree of its heritability is determined, in part, by the anatomical proximity of the brain areas involved. We also show that the regional distribution of TBOLD in the cortex is significantly associated with that of the vesicular acetylcholine transporter. These findings establish that TBOLD as a key heritable measure of local cortical brain function captured by neurovascular coupling.

The dynamic shaping of local cortical circuitry by sex and age, and its relation to pattern comparison processing speed

Previous resting-state fMRIFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. studies have shown that the strength of local neural interactions decreases with distance. Here, we extend that line of research to evaluate effects of sex and age on local cortical circuitry in six cortical areas (superior frontal, precentral, postcentral, superior parietal, inferior parietal, and lateral occipital) using data acquired from 1,054 healthy young adults who participated in the Human Connectome Project. We confirmed previous findings that the strength of zero-lag correlations between prewhitened, resting-state, blood level oxygenation-dependent (BOLD) fMRIFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. time series decreased with distance locally and documented that the rate of decrease with distance (spatial steepness) 1) was progressively lower from anterior to posterior areas, 2) was greater in women, especially in anterior areas, 3) increased with age, particularly for women, 4) was significantly correlated with percent inhibition, and 5) was positively and highly significantly correlated with pattern comparison processing speed (PCPS). A hierarchical...

BOLD turnover in task-free state: variation among brain areas and effects of age and Human Leukocyte AntigenHuman Leukocyte Antigen (HLA)Genes that are located in the Major Histocompatibility Complex (MHC) of chromosome 6 and play a central role in immune recognition. Most investigations of association of HLA to various diseases have focused on evaluating HLA allele frequencies in diseases of interest, as compared to the general, healthy population. Such studies have demonstrated HLA involvement with cancer, autoimmune, and in- fectious diseases. HLA Class I proteins (HLA-A, B, C) are expressed on all nucleated cells and present peptides from endogenous proteins to cytotoxic T lymphocytes engaged in immune surveillance. HLA Class II proteins (HLA-DRB1, DRB3/4/5, DQB1, DPB1) are expressed on antigen-presenting cells and present peptides derived from exogenous proteins to CD4+helper T cells. A previous study of Gulf War syndrome in 27 veterans found that HLA DRB1*15 was more prevalent in cases than controls with an odds ratio of 1.66, although this association was not statistically significant. DRB1*13

Blood oxygen level dependent (BOLD) signal in fMRIFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. is frequently used as a proxy for underlying neural activity. Although this is a plausible assumption for experiments where a task is performed, it may not hold to the same degree for conditions of fMRIFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. recording in a task-free, “resting” state where neural synaptic events are weak and, hence, neurovascular coupling and endothelial vascular factors become more prominent (Hillman Annu Rev Neurosci 37:161–181, 2014, 10.1146/annurev-neuro-071013-014111). Here we investigated the magnitude of change of BOLD in consecutive samples over the acquisition time period (turnover of BOLD, “TBOLD”) by first-order differencing of single-voxel BOLD time series acquired in 70 areas of the cerebral cortex of 57 cognitively healthy women in a task-free resting state. More specifically, we evaluated (a) the variation of TBOLD among different cortical areas, (b) its dependence on age, and (c) its dependence on the presence (or absence)...

Functional cortical associations and their intraclass correlations and heritability as revealed by the Functional Magnetic Resonance ImagingFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. Human Connectome Project

We report on the functional connectivity (FC), its intraclass correlation (ICC), and heritability among 70 areas of the human cerebral cortex. FC was estimated as the Pearson correlation between averaged prewhitened Blood Oxygenation Level-Dependent time series of cortical areas in 988 young adult participants in the Human Connectome Project. Pairs of areas were assigned to three groups, namely homotopic (same area in the two hemispheres), ipsilateral (both areas in the same hemisphere), and heterotopic (nonhomotopic areas in different hemispheres). ICC for each pair of areas was computed for six genetic groups, namely monozygotic (MZ) twins, dizygotic (DZ) twins, singleton siblings of MZ twins (MZsb), singleton siblings of DZ twins (DZsb), non-twin siblings (SB), and unrelated individuals (UNR). With respect to FC, we found the following. (a) Homotopic FC was stronger than ipsilateral and heterotopic FC; (b) average FCs of left and right cortical areas were highly and positively correlated; and (c)...

Effects of sex and age on presumed inhibitory interactions in 6 areas of the human cerebral cortex as revealed by the Functional Magnetic Resonance ImagingFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. Human Connectome Project

Cortical inhibition is theorized to reflect an underlying property of human brain function, sharpening tuning and shaping connectivity. Although age and sex effects on large-scale resting-state brain connectivity have been well documented, effects on local cortical inhibition have received relatively limited attention. Here, we evaluated age and sex effects on presumed local inhibitory interactions in 6 lateral cortical areas using resting-state fMRIFunctional Magnetic Resonance Imaging (fMRI)A functional neuroimaging procedure using MRI technology that measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that cerebral blood flow and neuronal activation are coupled. When an area of the brain is in use, blood flow to that region also increases.[citation needed] The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, discovered by Seiji Ogawa. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain cells. Since the early 1990s, fMRI has come to dominate brain mapping research because it does not require people to undergo shots, surgery, or to ingest substances, or be exposed to ionising radiation, etc. data acquired from 1054 young adults who participated in the Human Connectome Project. For each area, all possible pairwise crosscorrelations between prewhitened blood oxygenation level-dependent (BOLD) time series were calculated, and the highest value (CCmax) was retained to determine the mean and percentage of negative and positive CCmax. Here, we focused on the percentage of negative CCmax which we referred to as presumed “percent inhibition”. The results documented regional differences in percent inhibition as well as age and sex effects, such that women’s brains were...